Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Masoud Rafizadeh, ${ }^{\text {a* Vahid }}$ Amani ${ }^{\text {b }}$ and Hassan Aghayan ${ }^{\text {a }}$

${ }^{\text {a }}$ Department of Chemistry, Teacher Training University, 49 Mofateh Avenue, 15614 Tehran, Iran, and ${ }^{\text {b }}$ Tehran Suburb Education Organization, Chahardangeh region, Tehran, Iran

Correspondence e-mail:
rafizadeh@saba.tmu.ac.ir

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{O}-\mathrm{N})=0.006 \AA$
R factor $=0.049$
$w R$ factor $=0.090$
Data-to-parameter ratio $=18.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
Poly[[aquatris(μ-dimethyl phosphato- $\kappa^{2} O, O^{\prime}$)-$\operatorname{bis}(\mu$-dimethyl sulfoxide- $\kappa O)($ dimethyl sulfoxide- $\kappa O)$ dimanganese(II)] nitrate monohydrate]

In the title compound, $\left\{\left[\mathrm{Mn}_{2}\left\{\left(\mathrm{O}_{2} \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{2}\right\}_{3}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{SO}\right)_{3^{-}}\right.\right.\right.$ $\left.\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, the octahedral $\mathrm{Mn}^{\mathrm{II}}$ ions form a polymeric chain, being bridged by both dimethyl sulfoxide molecules and dimethyl phosphate anions. A network of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds helps to consolidate the crystal packing.

Comment

In a recent paper, we reported the synthesis and crystal structure of $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right](\mathrm{DMP})_{2}$ (Rafizadeh \& Amani, 2006a), where DMP is the dimethyl phosphate anion, $\left[\mathrm{O}_{2} \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{2}\right]^{-}$. In this compound, DMP is not bonded to the metal and acts as a counter-ion. Conversely, in $\left[\mathrm{Cu}_{2}(\mu \text {-DMP })_{4}(\mathrm{DMSO})\right]_{n}$ (Rafizadeh et al., 2005), $\left[\mathrm{UO}_{2}(\mu \text {-DMP })_{4}(\mathrm{DMSO})\right]_{n}$ (Rafizadeh, Hoseinzadeh \& Amani, 2006), $\left[\mathrm{La}(\mu \text {-DMP })_{2}\left(\mu_{3^{-}}\right.\right.$ $\left.\left.\mathrm{NO}_{3}\right)(\mathrm{DMSO})\right]_{n}$ (Rafizadeh, Amani \& Broushaky, 2006) and $\left[\mathrm{UO}_{2}(\mu-\mathrm{DEP})_{4}(\mathrm{DMSO})\right]_{n} \quad($ Rafizadeh \& Amani, 2006b), (DMSO is dimethyl sulfoxide and DEP is diethyl phosphate), DMP and DEP act as O-atom donor ligands, thus forming coordination polymers in the solid state. We now report the synthesis and structure of the polymeric title compound, (I).

Received 25 August 2006 Accepted 27 August 2006

The asymmetric unit of (I) contains four distinct Mn centers that adopt distorted MnO_{6} octahedral coordination. In each case, five of the attached O atoms arise from bridging DMP anions and DMSO molecules. The sixth coordination site is occupied by a non-bridging DMSO O atom (Mn1 and Mn3) or a water molecule O atom (Mn 2 and Mn 4). Overall, polymeric chains propagating in [100] result. There are also two $\mathrm{NO}_{3}{ }^{-}$ counter-ions and two non-coordinated water molecules in the asymmetric unit (Fig. 1). The $\mathrm{Mn}-\mathrm{O}$ (Table 1) and $\mathrm{P}-\mathrm{O}$ bond lengths in (I) are in agreement with the corresponding

Figure 1
The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50\% probability level (arbitrary spheres for the H atoms).

Figure 2
Packing diagram for (I). Hydrogen bonds are shown as dashed lines.
ones in $\left[\mathrm{Mn}\left(\mathrm{HPO}_{4}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]$ (Krishnamohan Sharma et al., 2003).

An extensive network of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2) helps to consolidate the crystal packing (Fig. 2).

Experimental

Trimethyl phosphate ($2.17 \mathrm{~g}, 1.8 \mathrm{ml}, 15 \mathrm{mmol}$) was added to a solution of $\mathrm{Mn}\left(\mathrm{NO}_{3}\right)_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}(0.97 \mathrm{~g}, 3.75 \mathrm{mmol})$ in DMSO (10 ml) and ethanol (20 ml) and the resulting colorless solution was refluxed at 338 K for 3 h . This solution was left to evaporate slowly at room temperature. After six months, colorless prismatic crystals of (I) were isolated (yield $1.12 \mathrm{~g}, 73.1 \%$; m.p. 342 K).

Crystal data

$\left[\mathrm{Mn}_{2}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{4} \mathrm{P}\right)_{3}\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{SO}\right)_{3^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot \mathrm{NO}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=817.42$
Monoclinic, $P 2_{1} / c$
$a=15.398$ (2) A
$b=20.877$ (3) A
$c=20.090(3) \AA$
$\beta=91.561(4)^{\circ}$
Data collection
Bruker SMART1000 CCD
diffractometer
ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
$T_{\text {min }}=0.754, T_{\max }=0.835$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.050$
$w R\left(F^{2}\right)=0.090$
$S=0.99$
14050 reflections
763 parameters

Table 1
Selected bond lengths (\AA).

$\mathrm{Mn} 1-\mathrm{O} 4$	$2.100(3)$	$\mathrm{Mn} 3-\mathrm{O} 17$	$2.098(3)$
$\mathrm{Mn} 1-\mathrm{O} 3$	$2.118(3)$	$\mathrm{Mn} 3-\mathrm{O} 20$	$2.112(3)$
$\mathrm{Mn} 1-\mathrm{O} 5$	$2.152(3)$	$\mathrm{Mn} 3-\mathrm{O} 25$	$2.163(3)$
$\mathrm{Mn} 1-\mathrm{O} 1$	$2.237(3)$	$\mathrm{Mn} 3-\mathrm{O} 26$	$2.229(3)$
$\mathrm{Mn} 1-\mathrm{O}$	$2.241(3)$	$\mathrm{Mn} 3-\mathrm{O} 23$	$2.241(3)$
$\mathrm{Mn} 1-\mathrm{O} 2$	$2.254(3)$	$\mathrm{Mn} 3-\mathrm{O} 24$	$2.252(3)$
$\mathrm{Mn} 2-\mathrm{O} 16$	$2.083(3)$	$\mathrm{Mn} 4-\mathrm{O} 2$	$2.094(3)$
$\mathrm{Mn} 2-\mathrm{O} 11$	$2.098(3)$	$\mathrm{Mn} 4-\mathrm{O} 27$	$2.122(3)$
$\mathrm{Mn} 2-\mathrm{O} 14$	$2.128(3)$	$\mathrm{Mn} 4-\mathrm{O} 31$	$2.132(3)$
$\mathrm{Mn} 2-\mathrm{O} 15$	$2.126(3)$	$\mathrm{Mn} 4-\mathrm{O} 30$	$2.143(3)$
$\mathrm{Mn} 2-\mathrm{O} 2$	$2.309(3)$	$\mathrm{Mn} 4-\mathrm{O} 24$	$2.282(3)$
$\mathrm{Mn} 2-\mathrm{O} 1$	$2.319(3)$	$\mathrm{Mn} 4-\mathrm{O} 23$	$2.320(3)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O14-H14D \cdots O25	0.85	1.90	$2.752(4)$	178
O14-H14E \cdots O1 W	0.85	1.90	$2.698(5)$	156
O30-H30D \cdots O2W	0.85	1.93	$2.724(4)$	156
O30-H30E $\cdots 5^{\mathrm{i}}$	0.85	1.92	$2.761(4)$	168
O1W-H1W1 \cdots O2S	0.85	1.98	$2.766(5)$	153
O1W-H1W2 \cdots O6	0.85	2.06	$2.845(4)$	154
O2W-H2W1 \cdots O6S	0.85	1.99	$2.770(5)$	152
O2W-H2W2 \cdots O26	0.85	1.99	$2.837(4)$	177

Symmetry code: (i) $x-1, y, z$.
The O-bound H atoms were located in a difference map and refined as riding in their as-found relative positions, with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{O})$. The C -bound H atoms were placed in idealized locations $(\mathrm{C}-\mathrm{H}=0.98 \AA)$ and refined as riding, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C})$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINTPlus (Bruker, 1998); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

metal-organic papers

We are grateful to the Teacher Training University for financial support.

References

Bruker (1998). SAINT-Plus (Version 6.01) and SMART (Version 5.059). Bruker AXS Inc., Madison, Wisconsin, USA.

Krishnamohan Sharma, C. V., Chusuei, C. C., Clerac, R., Mo1ller, T., Dunbar, K. R. \& Clearfield, A. (2003). Inorg. Chem. 42, 8300-8308.

Rafizadeh, M. \& Amani, V. (2006a). Acta Cryst. E62, m1776-m1777.
Rafizadeh, M. \& Amani, V. (2006b). Anal. Sci. 22, x211-x212.
Rafizadeh, M., Amani, V. \& Broushaky, M. (2006). Anal. Sci. 22, x213-x214.
Rafizadeh, M., Hoseinzadeh, F. \& Amani, V. (2006). Anal. Sci. 22, x3-x4.
Rafizadeh, M., Tayebee, R., Amani, V. \& Nasseh, M. (2005). Bull. Korean Chem. Soc. 26, 594-598.
Sheldrick, G. M. (1998). SADABS (Version 2.01) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.

[^0]: © 2006 International Union of Crystallography All rights reserved

